

Immunoglobulin A Nephropathy (IgAN) explained

EDUCATIONAL PRESENTATION

This presentation is intended for Healthcare Professionals (HCPs) MED-HQ-SPT-2300020 | September 2023

Guiding you through IgAN

IgAN, immunoglobulin A nephropathy; KDIGO, Kidney Disease: Improving Global Outcomes.

EPIDEMIOLOGY

Immunoglobulin A Nephropathy (IgAN) explained

IGAN IS THE MOST PREVALENT TYPE OF PRIMARY GLOMERULONEPHRITIS WORLDWIDE^{1,2}

IgAN is a major global cause of kidney failure^{1,2}

IgAN is detected in 19–51% of kidney biopsies performed in glomerular diseases in Europe⁴

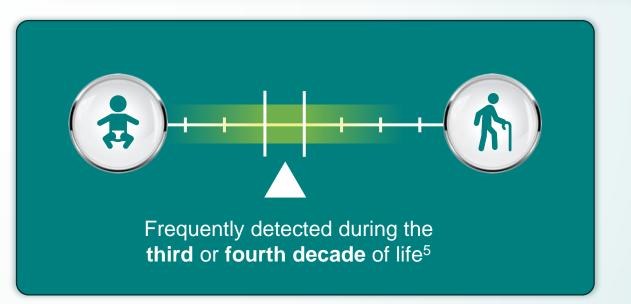
In the European Union, IgAN affects approximately 4 in 10,000 people^{5*}

*The number of patients affected by IgAN is estimated and assessed on the basis of data from the EU, Iceland, Liechtenstein, Norway, and the UK. This represents a population of 519,200,000 (Eurostat)⁵.

IgAN, immunoglobulin A nephropathy

1. Kidney Disease: Improving Global Outcomes (KDIGO) Glomerular Diseases Work Group. KDIGO 2021 Clinical Practice Guideline for the Management of Glomerular Diseases. *Kidney Int* 2021;100:S1–276; 2. Yeo SC, *et al. Pediatr Nephrol* 2018;33:763–77; 3. McGrogan A, *et al. Nephrol Dial Transplant* 2011;26:414–30; 4. Coppo R. *Kidney Dis* 2018;4:58–64; 5. EU/3/20/2336: Orphan designation for the treatment of primary IgA nephropathy. Available at: https://www.ema.europa.eu/en/medicines/human/orphan-designations/eu3202336 (accessed: August 2023).

IgAN CAN AFFECT PEOPLE OF ALL AGES AND ETHNICITIES^{1–5}


The prevalence of IgAN may vary by ethnicity and sex^{1–5}

2:1 in Asia⁶6:1 in Europe and the US⁶

- Most prevalent in people of East Asian descent followed by Caucasians, and it is rare in individuals of African descent^{1–4}
 - Up to **13 times** less prevalent in African Americans than in Caucasians⁵
- Frequently affects males and young adults who are otherwise healthy and often asymptomatic^{4–6}

Prevalence may be higher than reported due to country-level differences in biopsy techniques and policies, and varying levels of access to primary care^{4,5}

IgAN, immunoglobulin A nephropathy.

1. Jennette JC, et al. Kidney Int 1985;29:944–50; 2. Korbet SM, et al. Am J Kidney Dis 1996;27:647–51; 3. Kiryluk K, et al. PLoS Genetics 2012;8:e1002765; 4. Yeo SC, et al. Nephrology 2019;24:885–95; 5. Nair R, et al. Kidney Int 2006;69:1455–58; 6. Deng W, et al. BMC Nephrol 2018;19:31.

SEVERAL FACTORS INFLUENCE A PATIENTS' SUSCEPTIBILITY TO IGAN

Genetic factors^{1–4}

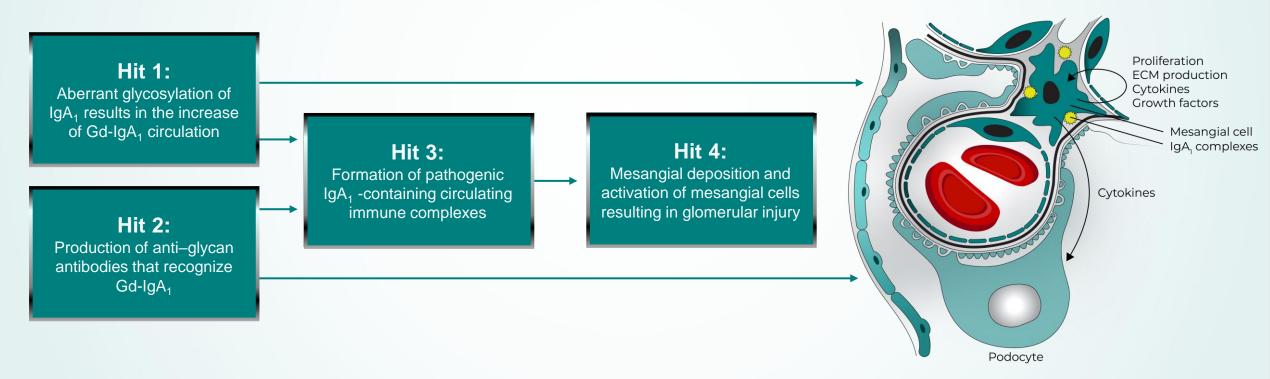
- Serum galactose-deficient IgA₁ levels have a high heritability
- Genetic factors may influence the presentation of antibodies to galactose-deficient IgA₁
- Genetic and epigenetic factors may influence the immune response to infectious and dietary antigens

Environmental^{1,2}

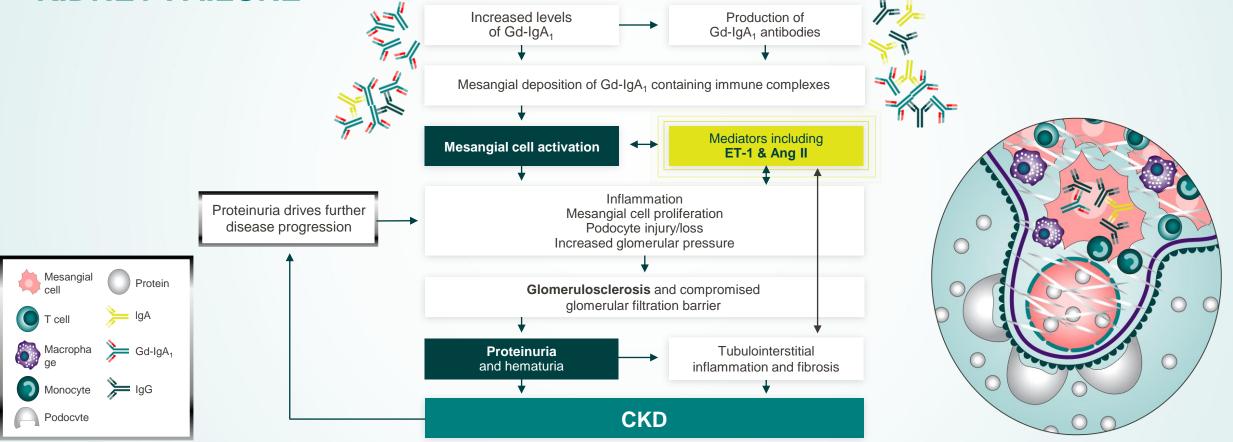
 Mucosal exposure to infectious antigens may increase circulating galactose-deficient IgA₁ and circulating antibodies directed against this abnormal IgA₁ as well as disease progression

Lifestyle factors^{1,3,4}

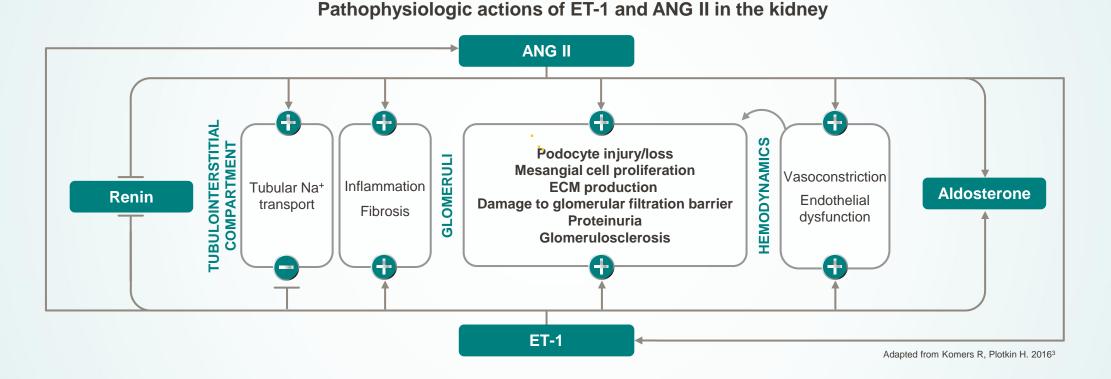
- Mucosal exposure to dietary antigens may increase circulating galactose-deficient IgA₁ and circulating antibodies directed against this abnormal IgA₁
- Increased salt intake, obesity, hypertension, diabetes, and lipid disorders can contribute to disease progression


MECHANISM OF DISEASE

Immunoglobulin A Nephropathy (IgAN) explained


GLOMERULAR DEPOSITION OF IMMUNE COMPLEXES CONTAINING GALACTOSE-DEFICIENT IgA₁ (Gd-IgA₁) IS A KEY FEATURE LEADING TO KIDNEY DAMAGE¹

THERE ARE 4 HITS INVOLVED IN THE PATHOGENESIS OF IGAN:

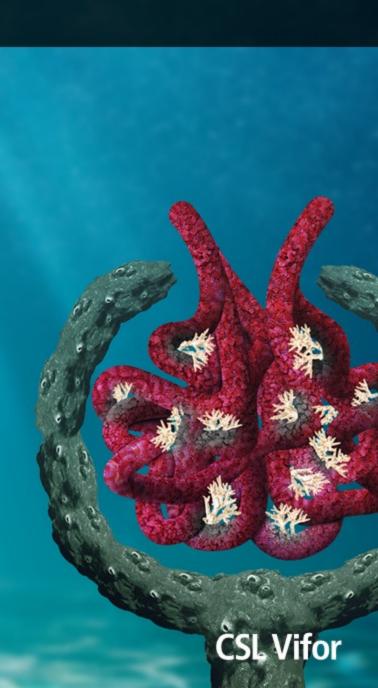

Gd–IgA₁ CONTAINING IMMUNE COMPLEXES CAN LEAD TO PROTEINURIA, PROGRESSIVE LOSS OF GLOMERULAR FILTRATION RATE (GFR) AND KIDNEY FAILURE^{1–5}

Ang II, angiotensin II; CKD, chronic kidney disease; ET-1, endothelin-1; Gd-IgA₁, galactose-deficient IgA₁; GFR, glomerular filtration rate; IgA, immunoglobulin A; IgA₁, immunoglobulin A subclass 1; IgG, immunoglobulin G. **1.** Komers R, Plotkin H. *Am J Physiol Regul Integr Comp Physiol* 2016;310:R877–84; **2.** Lai K, *et al. Nat Rev Dis Primers* 2016;2:16001; **3.** Raina R, *et al. Kidney Dis* 2020;6:22–34; **4.** Wyatt RJ, Julian BA. *N Engl J Med* 2013;368:2402–14; **5.** Sharma S, Smyth B. *Kidney Blood Press Res* 2021;46:411–20.

ET-1 AND ANG II ACT IN TANDEM TO AMPLIFY DAMAGE THROUGH MULTIPLE PATHOPHYSIOLOGIC PROCESSES

ET-1 and ANG II act in tandem to amplify the inflammatory cytokine response and potentiate glomerular dysfunction, tubulointerstitial injury, and vascular dysfunction, worsening proteinuria and resulting in a progressive decline in kidney function^{1–3}

ANG II, angiotensin II; ECM, extracellular matrix; ET-1, endothelin-1.


1. Siragy H, Carey R. Am J Nephrol 2010;31:541–50; 2. Ruiz-Ortega M, et al. Nat Rev Nephrol 2020;16:269–88. 3. Komers R, Plotkin H. Am J Physiol Regul Integr Comp Physiol. 2016;310:R877–84.

DISEASE PROGRESSION

Immunoglobulin A Nephropathy (IgAN) explained

THE INTERNATIONAL IGAN PREDICTION TOOL CAN HELP IDENTIFY PATIENTS AT HIGH RISK OF RAPID DISEASE PROGRESSION

RISK PREDICTION TOOL

The International IgAN Prediction Tool, recommended by the KDIGO Guidelines, incorporates clinical and histologic data to provide a prognosis at the time of biopsy to help identify patients who are at a high risk of rapid disease progression and require urgent care to protect kidney function^{1–4}

The Risk Prediction Tool identifies factors that contribute to disease progression, including **proteinuria**

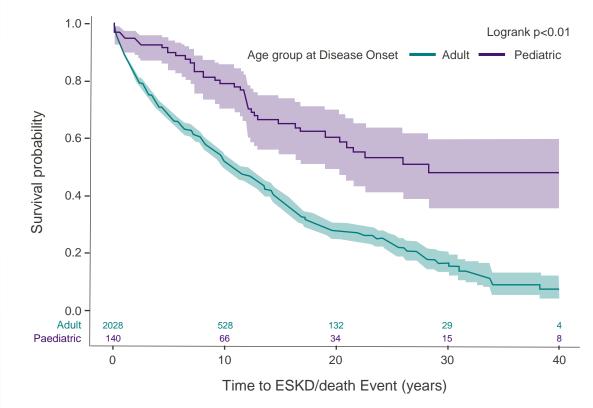
DATA ELEMENTS INCLUDED IN THE INTERNATIONAL IGAN PREDICTION TOOL

Estimated GFR at biopsyml/min/1.73 m ²	MEST M-score
Systolic blood pressure at biopsymm Hg	MEST E-score
Diastolic blood pressure at biopsymm Hg Proteinuria at biopsyg/day	0 1
Age at biopsyyears	MEST S-score 0 1
Race Caucasian Chinese Japanese Other	MEST T-score 0 1 2
Use of ACE inhibitor or ARB at the time of biopsy No Yes	Immunosuppression use at or prior to biopsy No Yes

ACE, angiotensin-converting enzyme; ARB, angiotensin II receptor blocker; GFR, glomerular filtration rate; IgAN, immunoglobulin A nephropathy; KDIGO, Kidney Disease: Improving Global Outcomes; MEST, mesangial hypercellularity, endocapillary proliferation, segmental sclerosis, tubular atrophy.

Zhang J, et al. Clin J Am Soc Nephrol 2020;15:1112–20; 2. Barbour SJ, et al. JAMA Intern Med 2019;179:942–52; 3. QxMD. International IgAN Prediction Tool. Available at: https://qxmd.com/calculate/calculator_499/international-IgAN-prediction-tool (accessed May 2023);
 KDIGO 2021 Clinical Practice Guideline for the Management of Glomerular Diseases. Kidney Int. 2021;100(4S):S1–276.

ADULT AND PEDIATRIC PATIENTS WITH IGAN HAVE AN INCREASED RISK OF PROGRESSIVE KIDNEY DISEASE¹


STUDY TYPE AND OBJECTIVE

- UK-based study of biopsy-verified patients with IgAN (N=2168)
- **Objective:** Describe the natural history of IgAN in adult and pediatric patients with a focus on time from diagnosis to ESKD

KEY RESULTS

- Median UP/C at onset of 1.52g/g with ~27% of patients having nephrotic range proteinuria
- Pediatric and adult patients showed a 50% kidney survival probability of 28 and 11 years, respectively
- Over a median follow-up of 9.5years, 34% of pediatric and 51% of adult patients progressed to ESKD

Survival time to first ESKD/death (years)

Adapted from Barratt J, et al. 2021

ESKD, end-stage kidney disease; IgAN, immunoglobulin A nephropathy; UP/C, urinary protein-to-creatinine ratio 1. Barratt J, *et al.* ASN 2021; poster presentation (PO1577).

PATIENTS WITH IGAN HAVE AN INCREASED RISK OF KIDNEY FAILURE OR DEATH¹

STUDY TYPE AND OBJECTIVE

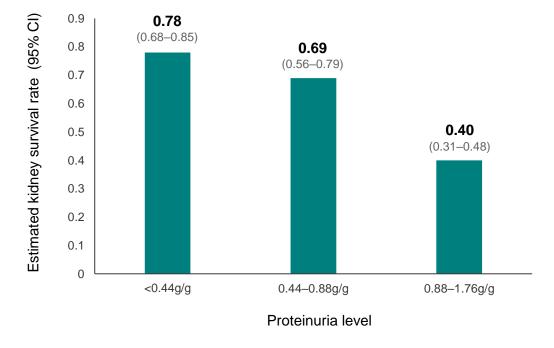
- Swedish population-based cohort study (1974–2011) (N=3622)
- Objective: Examine overall and cause-specific mortality as well as the risk of ESKD against matched controls*

KEY RESULTS

- Patients with IgAN had a 53% increased risk of all-cause mortality compared with matched controls
- This corresponded to a 6-year reduction in median life expectancy

*Matched for age, sex, calendar year, and country of residence at the time of kidney biopsy. ESKD, end-stage kidney disease; ESRD, end-stage renal disease; IgAN, immunoglobulin A nephropathy. 1. Jarrick S, *et al. J Am Soc Nephrol* 2019;30:866–76.

LONG-TERM OUTCOMES IN IGA NEPHROPATHY: THE RADAR* STUDY¹


STUDY TYPE AND OBJECTIVE

- UK population-based retrospective cohort study (2013-2022) (N=2439)
- **Objective:** Examine the relationship between proteinuria, eGFR slope, and long-term risk of kidney failure in patients with IgAN

KEY RESULTS

- Median age at diagnosis was 40 and the median age of kidney failure/death was 48
- Median kidney survival time of 11.4years
- 30% of patients with time-averaged proteinuria of 0.44 to <0.88g/g and approximately 20% of patients with time-averaged proteinuria <0.44g/g developed kidney failure within 10years

Estimated kidney survival rates within 10 years based on time average proteinuria

Adapted from Pitcher et al. 2023

*UK Registry of Rare Kidney Diseases. eGFR, estimated glomerular filatration rate; IgAN, immunoglobulin A nephropathy.

1. Pitcher D, et al. Clin J Am Soc Nephro 2023;18:727–38.

IGAN PROFOUNDLY IMPACTS PATIENTS' QUALITY OF LIFE

The **wellbeing of patients** with progressive IgAN is **significantly affected**, with **pain and fatigue** commonly reported¹ alongside depression and anxiety²

• Fear of uncertainty and complications with therapies leaves patients feeling anxious and depressed²

QoL is seriously affected in patients who progress to kidney failure:

- **Physical symptoms** include fatigue*, sexual dysfunction, weakness, insomnia, anorexia, dysgeusia, nausea, muscle cramps, pruritus, bone pain and fractures, visual disturbances, and neuropathy^{2,3}
- Mental symptoms include depression, anxiety, and cognitive dysfunction^{2,3}

*Defined as extreme and persistent tiredness, weakness, or exhaustion. IgAN, immunoglobulin A nephropathy; QoL, quality of life.

1. Kwon CS, et al. J Health Econ Outcomes Res 2021;8:36–45; 2. Lai KN, et al. Nat Rev Dis Primers 2016;2:16001; 3. Artom M, et al. Kidney Int 2014;86:497–505.

FATIGUE COMMONLY OCCURS IN PATIENTS WITH IGAN AND IS ASSOCIATED WITH POOR OUTCOMES¹

STUDY TYPE AND OBJECTIVE

- Systematic literature review of Embase, MEDLINE, Cochrane, and EconLit, and relevant congresses*
- **Objective:** Analyze published evidence on epidemiology, burden, and current treatment patterns in IgAN

KEY RESULTS

 Across 8 studies reporting HRQOL, pain and fatigue were the most reported symptoms

Impact of pain and fatigue on patients with IgAN

- **Pain and fatigue** were the most common symptoms associated with an impact on physical activity.
- Patients and caregivers reported **emotional distress from lack of counseling** or detailed information on IgAN.
- Patients were impacted by anxiety, depression, fear of progression to kidney failure, the requirement for dialysis or transplantation, and the risk of IgAN recurrence post transplant

*Searches conducted between January 2010 and June 2020 and 2017 to 2020, respectively. HRQOL, health-related quality of life; IgA, immunoglobulin A nephropathy. 1. Kwon CS, *et al. J Health Econ Outcomes Res* 2021; 8:36–45.

IMPORTANCE OF PROTEINURIA

Immunoglobulin A Nephropathy (IgAN) explained

PROTEINURIA-ACTIVATED MECHANISMS DRIVE PROGRESSIVE KIDNEY DISEASE

PROTEINURIA

Excessive protein absorption in the proximal tubule^{1,2}

Protein overload of tubular epithelial cells and spreading of injury¹

Tubular cell apoptosis, monocyte infiltration, and interstitial

accumulation of extracellular matrix¹

Proximal tubular cell activation, **interstitial inflammation**, and disturbed expression of proteins are associated with **fibrosis**^{1,3,4}

Apoptosis increased in tubular cells

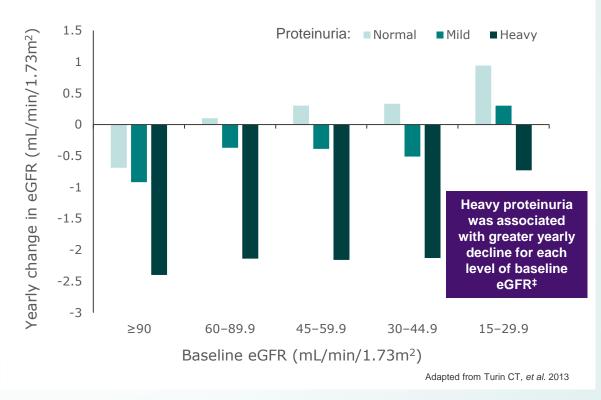
- Albuminuria induced apoptosis in vitro⁵
- Proteinuria correlated with number of apoptotic tubular cells in pediatric biopsy specimens⁶

Interstitial inflammation induced

 Driver of interstitial inflammation upregulated in in vitro model of proteinuria in kidney failure⁷

1. Abbate M, et al. J Am Soc Nephrol 2006;17:2974–84; 2. Christensen El, Birn H. Am J Physiol Renal Physiol 2001;280:F562–73; 3. Solic I, et al. Int J Molecular Sci 2021;22:3500; 4. Cravedi P, Remuzzi G. Br J Clin Pharmacol 2013;76:516–23; 5. Erkan E, et al. Am J Physiol Renal Physiol 2001;280:F562–73; 3. Solic I, et al. Int J Molecular Sci 2021;22:3500; 4. Cravedi P, Remuzzi G. Br J Clin Pharmacol 2013;76:516–23; 5. Erkan E, et al. Am J Physiol Renal Physiol 2001;280:F562–73; 3. Solic I, et al. Int J Molecular Sci 2021;22:3500; 4. Cravedi P, Remuzzi G. Br J Clin Pharmacol 2013;76:516–23; 5. Erkan E, et al. Am J Physiol Renal Physiol 2001;280:F562–73; 3. Solic I, et al. Int J Molecular Sci 2021;22:3500; 4. Cravedi P, Remuzzi G. Br J Clin Pharmacol 2013;76:516–23; 5. Erkan E, et al. J Am Soc Nephrol 1997;8:1537–45.

PROTEINURIA IS A BIOMARKER OF GLOMERULAR DISEASE SEVERITY¹


STUDY TYPE AND OBJECTIVE

- Study: Analysis* of a cohort of adults receiving routine kidney disease care in a Canadian province (N=638,150)
- Objective: Determine the association between baseline proteinuria and yearly decline in kidney function

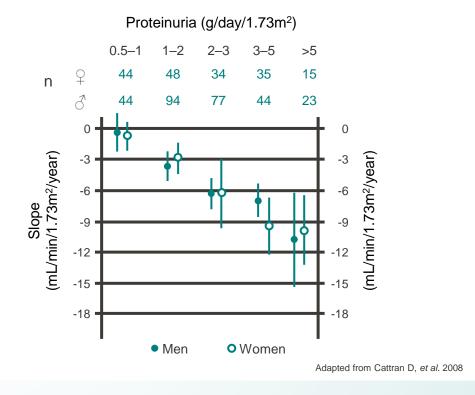
KEY RESULTS

 Proteinuria of increasing severity was associated with a greater decline in eGFR, irrespective of baseline eGFR

Rate of change in eGFR by proteinuria categories[†]

*Covariates: age, sex, socioeconomic status, kidney function, proteinuria, and comorbid conditions. [†]Rate of change shown in men. [‡]Normal: urine dipstick negative or ACR <30mg/g; mild: urine dipstick trace 1+ or ACR 30–300mg/g; heavy: urine dipstick reading 2+ or ACR >300mg/g. eGFR ≥90, 60–89.9, 45–59.9, 30–44.9, and 15–29.9mL/min/1.73m². ACR, albumin-to-creatinine ratio; eGFR, estimated glomerular filtration rate. **1.** Turin CT, *et al. J Am Soc Nephrol* 2013;24:1661–7.

INCREASING PROTEINURIA ACCELERATES KIDNEY FUNCTION DECLINE¹


STUDY TYPE AND OBJECTIVE

- Analysis of 542 patients* from the Toronto Glomerulonephritis Registry between 1974 and 2005
- **Objective:** Evaluate the interaction between proteinuria and decline in kidney function in male and females with glomerular disease

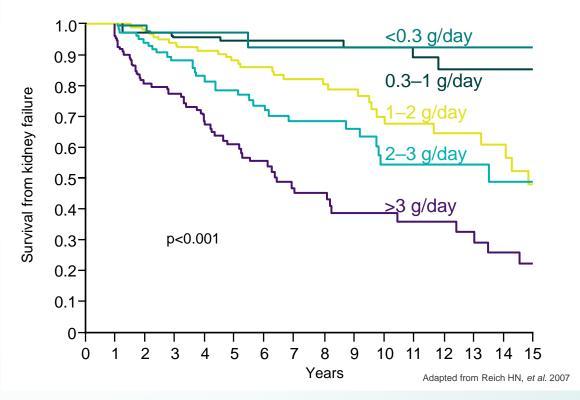
KEY RESULTS

 Kidney function decline is accelerated with increasing levels of proteinuria in patients with IgAN

Interaction between proteinuria and rate of kidney function decline

*With biopsy-proven IgAN. IgA, immunoglobulinin A nephropathy. 1. Cattran D, et al. Nephrol Dial Transplant 2008;23:2247–53.

SUSTAINED PROTEINURIA IS THE STRONGEST PREDICTOR OF DISEASE PROGRESSION¹


STUDY TYPE AND OBJECTIVE

- Analysis of eligible* patients with biopsy-proven IgAN (N=542)
- **Objective:** Examine the effects of sustained exposure to proteinuria on outcome

KEY RESULTS

- Sustained proteinuria of >1g/day was the strongest predictor of the rate of progression of kidney disease and the development of kidney failure
- Each incremental gram per day above 1g is associated with a 10- to 25-fold more rapid rate of decline in kidney function[‡]

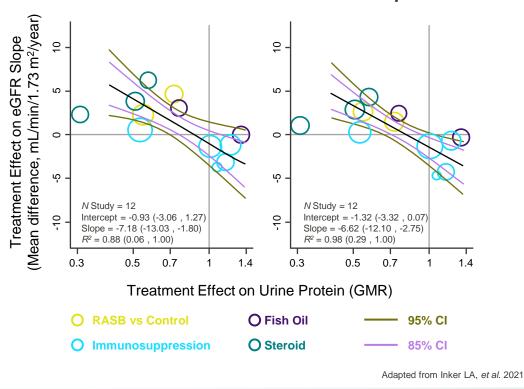
Kidney survival by category of TA proteinuria[†]

*Of 1373 patients in the Toronto Glomerulonephritis Registry, 542 patients met the elibility criterta; patients had to have proteinuria data, weight data, be at least 16 years of age, have more than 12 months follow upand were excluded if they had a secondary cause of IgA deposition; †TA proteinuria represents an average of the mean of every 6-month period's proteinuria measurements, with 6.5 years follow up; ‡Similar differences were observed for kidney survival.

IgA, immunoglobulin A nephropathy; TA, time averaged.

1. Reich HN, et al. J Am Soc Nephrol 2007;18:3177-83.

EARLY REDUCTION IN PROTEINURIA CAN IMPROVE DISEASE OUTCOMES IN IgAN¹


STUDY TYPE AND OBJECTIVE

- Individual patient-level meta-analysis of 1037 patients with IgAN across 12 RCTs
- **Objective:** Evaluate the treatment effect on change in proteinuria and eGFR slope

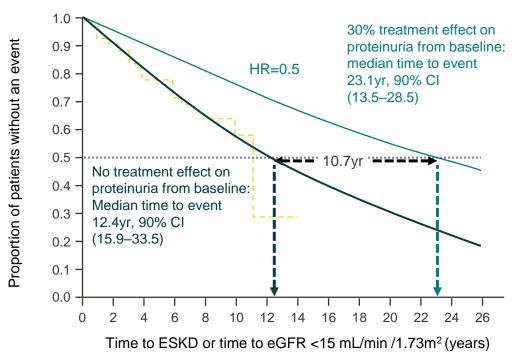
KEY RESULTS

 For every 10% reduction in geometric mean urine protein level by treatment there was an associated 0.72mL/min/1.73m² per year reduction in mean eGFR slope

Treatment effect on change in urine protein level and effects on total eGFR slope

eGFR, estimated GFR; GFR, glomerular filtration rate; IgAN, immunoglobulin A nephropathy; RASB, renin-angiotensin system blockade; RCT, randomized clinical trials 1. Inker LA, et al. Am J Kidney Dis 2021; 78:340–9.

PROTEINURIA REDUCTION MAY PREDICT TREATMENT EFFECT ON DELAYING KIDNEY FUNCTION DECLINE¹


STUDY TYPE AND OBJECTIVE

- Modeling study of n=81 patients with IgAN and proteinuria ≥1.0g/day (or UP/C ≥1.0g/g) and an eGFR ≥30mL/min/1.73 m² at the initiation of RAS blockade from the Leicester University Hospital's cohort
- Objective: Estimate the delay in time to ESKD* conferred by the hypothesized treatment effect on proteinuria

KEY RESULTS

 30% reduction in proteinuria at 9 months conferred a 50% lower risk of ESKD, extending the median time to ESKD by 10.7 years

Time to ESKD in patients with IgAN*

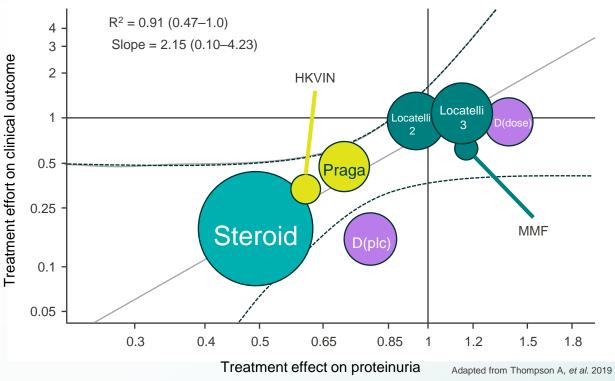
Adapted from Carroll KJ, et al. 2021

*ESKD defined as eGFR <15 mL/min, initiation of dialysis or transplantation.

eGFR, estimated glomerular filtration rate; ESKD, end-stage kidney disease; IgAN, immunoglobulin A nephropathy; RAS, renin-angiotensin system

1. Carroll KJ, et al. ERA-EDTA Congress 2021; oral presentation (MO246).

TREATMENT-INDUCED REDUCTION IN PROTEINURIA IS ASSOCIATED WITH IMPROVED KIDNEY OUTCOMES¹


STUDY TYPE AND OBJECTIVE

- Meta-analysis of 13 controlled trials
- Objective: To identify surrogate end points serving as reliable predictors of a treatment's effect on long-term kidney outcomes*

KEY RESULTS

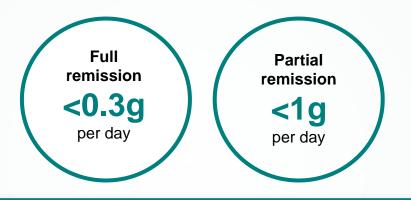
- Association between treatment effect on proteinuria and effect on doubling of serum creatinine or ESKD (R²=0.91 [0.47–1.0][†])
- An R² of 0.91 indicates that for a given treatment effect on urine-protein excretion, the clinical outcome is expected to be double the treatment effect on urine-protein excretion[‡]

Treatment effects on change in proteinuria and on clinical endpoints

*Clinical endpoints defined as the composite of the time to the first occurrence of a doubling of serum creatinine level, ESKD, or death. †Measurements could be made between 7 and 12 months. ‡When the respective

treatment effects are expressed on the log hazard ratio and log geometric mean scales.

ESKD, end-stage kidney disease; R², squared correlation. **1.** Thompson A. *et al. Clin J Am Soc Nephrol* 2019;14:469–81


KDIGO CURRENT TREATMENT

Immunoglobulin A Nephropathy (IgAN) explained

KDIGO RECOMMEND PROTEINURIA LEVELS <1G/DAY TO PRESERVE KIDNEY FUNCTION

In IgAN, the KDIGO guidelines define proteinuria targets:1

KDIGO CLINICAL PRACTICE GUIDELINE FOR GLOMERULAR DISEASES

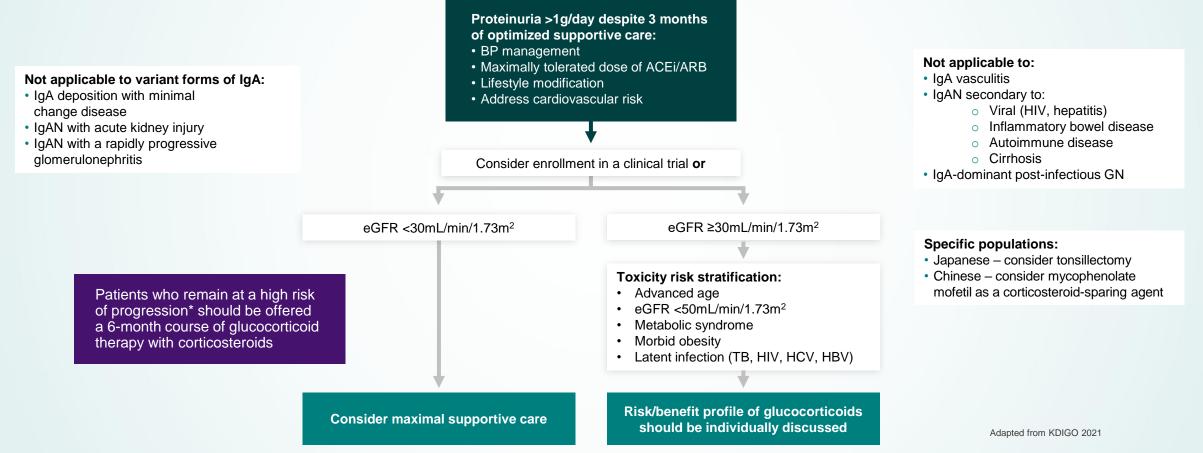
- A target of treatment is to reduce proteinuria to <1g/day¹, and for adults with high BP and CKD to be treated to a target systolic blood pressure of <120mmHg²
- The KDIGO Guideline defines high risk of progression in IgAN as proteinuria >0.75–1g/day despite at least 90 days of optimized supportive care¹

BP, blood pressure; CKD, chronic kidney disease; IgAN, immunoglobulin A nephropathy; KDIGO, Kidney Disease: Improving Global Outcomes.

1. KDIGO 2021 Clinical Practice Guideline for the Management of Glomerular Diseases. Kidney Int. 2021;100(4S):S1–276; 2. Cheung A, et al. Kid Int 2021;99:559–69.

KDIGO RECOMMEND REDUCING PROTEINURIA AND BP TO PRESERVE KIDNEY FUNCTION IN PATIENTS WITH IgAN¹

CURRENT TREATMENT OPTIONS:


- First-line therapy includes antiproteinuric and antihypertensive treatment with ACEi or ARB
- All patients with proteinuria >0.5g/day, irrespective of whether they have hypertension, should be treated with either an ACEi or ARB*
- Patients with persistent proteinuria >1g/day (despite at least 3 months of optimized supportive care) and eGFR ≥30mL/min/1.73m² should be considered for a 6-month course of glucocorticoid therapy. The important risk of treatment-emergent toxicity must be discussed with patients

*Included as recommendation 1B within the KDIGO guidelines.

ACEi, angiotensin-converting-enzyme inhibitor; ARB, angiotensin II receptor blocker; BP, blood pressure; eGFR, estimated glomerular filtration rate; IgAN, immunoglobulin A nephropathy; KDIGO, Kidney Disease: Improving Global Outcomes. **1.** KDIGO 2021 Clinical Practice Guideline for the Management of Glomerular Diseases. *Kidney Int.* 2021;100(4S):S1–276.

KDIGO RECOMMEND MANAGEMENT OF PATIENTS WITH IGAN WHO REMAIN AT HIGH RISK OF PROGRESSION^{1*}

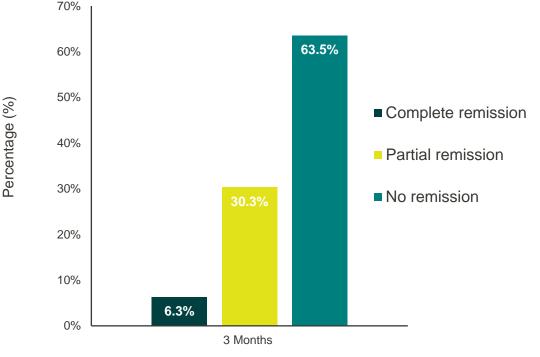
*Defined as proteinuria >0.75–1g/day despite 3 months of optimized supportive care.

ACEi, angiotensin-converting-enzyme inhibitor; ARB, angiotensin II receptor blocker; BP, blood pressure; eGFR, estimated glomerular filtration rate; GN, glomerulonephritis; HBV, hepatitis B virus; HCV, hepatitis C virus; HIV, human

immunodeficiency virus; IgA, immunoglobulin A; IgAN, immunoglobulin A nephropathy; TB, tuberculosis.

1. KDIGO 2021 Clinical Practice Guideline for the Management of Glomerular Diseases. Kidney Int 2021;100(4S):S1–276.

DESPITE CURRENT THERAPIES, MANY PATIENTS REMAIN AT HIGH RISK OF DISEASE PROGRESSION¹


STUDY TYPE AND OBJECTIVE

- Prospective study of patients with IgAN* (N=96)
- Objective: To investigate the effect of ACEi/ARB on progression to kidney disease

KEY RESULTS

- Partial remission⁺ of proteinuria was seen in 29 patients (30.2%) after 3 months of treatment
- 63.5% of patients treated with an ACEi or ARB did not achieve remission after 3 months of treatment

Rate of proteinuria remission following 3 months of treatment

Adapted from Bagchi S, et al. 2021

*With biopsy-proven IgAN and urinary protein ≥1g/day.

[↑]Partial remission of proteinuria was defined as <1g/day and ≥50% decrease from baseline with stable kidney function (≤25% reduction in eGFR).

ACEi, angiotensin-converting-enzyme inhibitor; ARB, angiotensin II receptor blocker; eGFR, estimated glomerular filtration rate; IgAN, Immunoglobulin A nephropathy

1. Bagchi S, et al. Kidney Int Rep 2021;6:1661-8.

THERE IS A HIGH UNMET NEED FOR DISEASE-MODIFYING TREATMENTS THAT PRESERVE KIDNEY FUNCTION

CONSIDERATIONS FOR CURRENTLY AVAILABLE TREATMENT OPTIONS

- With current standard of care therapies, more than half of patients remain above the target proteinuria level of >0.75–1g/day and are at high risk of disease progression^{1–3}
- Data supporting the recommendation of ACEi/ARB are of low to moderate quality, and studies specific to IgAN are limited¹
- The use of RAS blockade with ACEi/ARB and immunosuppression versus RAS blockade alone is still debated^{4,5}
- Immunosuppressive therapy should be avoided in certain patients and carries a significant risk of toxicity^{1,6} or increased risk of mortality⁷
- The use of high-dose steroids and other immunosuppressants was associated with an increased risk of infections in patients with IgAN^{6,8}

ACEi, angiotensin-converting-enzyme inhibitor; ARB, angiotensin II receptor blocker; IgA, immunoglobulin A nephropathy; RAS, renin-angiotensin system; SoC, standard of care.

KDIGO 2021 Clinical Practice Guideline for the Management of Glomerular Diseases. *Kidney Int* 2021;100(4S):S1–276; 2. Woo KT, *et al. Kidney Int* 2000;58:2485–91; 3. Bagchi S, *et al. Kidney Int* 2021;6:1661–8; 4. Campbell KN. *Kidney360* 2021;29:1084–6;
 Rauen T, *et al. Kidney Int* 2020;98:1044–52; 6. Rauen T, *et al. J Am Soc Nephrol* 2018;29:317–25; 7. Jarrick S, *et al. J Am Soc Nephrol* 2019;30:866–76; 8. Lv J, *et al. JAMA* 2017;318:432–42.

- IgAN, the most common glomerulonephritis worldwide, is characterized by glomerular deposition of immune complexes containing Gd-IgA₁ that lead to kidney damage
- In IgAN, reducing proteinuria is associated with a slower rate of disease progression and improved kidney survival
- KDIGO guidelines recommend reducing proteinuria to <1g/day in order to reduce the risk of renal events and improve kidney survival
- There remains a high unmet clinical need in IgAN therapy; a significant proportion of patients remain at an increased risk of progression despite maximal supportive care

Gd-IgA1, galactose-deficient immunoglobulin A subclass 1; IgAN, immunoglobulin A nephropathy; KDIGO, Kidney Disease: Improving Global Outcomes.

